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Abstract- Software testing plays a critical role in ensuring and evaluating the quality of software by verifying that 

it functions as intended and does not produce unintended behaviors. Despite advancements in software 

development methodologies and programming languages, testing remains a crucial component of the development 

process. While numerous techniques have been proposed to automate software testing, many fail to achieve 

satisfactory performance in terms of accuracy. This research introduces a reinforcement learning-based method 

for software testing, which demonstrates an impressive accuracy of 96%, offering a significant improvement over 

traditional testing approach. 
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1. INTRODUCTION 

Software testing refers to a quality assurance methodology that focuses on assessing the system under test (SUT) 

by conducting an observation of its operational performance to unmask possible failures [1]. A fault is discovered 

when the SUT's outer behaviour differs from the one it should have, according to either the requirements or some 

other description of preferred behaviour. Since this process involves executing the SUT, it is commonly known 

as dynamic analysis. Conversely, some quality assurance activities, known as static analysis, do not require the 

SUT’s execution. A crucial part of testing is the test case, which specifies the conditions under which the SUT 

should be executed in order to detect failures. When a test case exposes a failure, it is deemed successful or 

effective [2]. In order to overcome the impracticality of the exhaustive testing strategy, a number of techniques 

have been presented, which aid the developers and testers in creating reduced but efficient test suites. Each of 

these approaches focuses on different parts of a program by means of particular criteria, which specify the test 

requirements that a test suite should satisfy. Such requirements can be obtained from the software's different 

sectors, like specifications or implementation. In this context, the SUT can be instrumented to report how well a 

test suite satisfies these requirements. 

1.1 Functional Testing (or black-box testing)  

This type of testing relies solely on the SUT’s specifications, ignoring internal structure, to generate test cases. 

Popular criteria within this technique include equivalence partitioning and boundary-value analysis. 

1.2 Structural Testing (or white-box testing)  

This testing approach is grounded on the SUT's implementation and aims to come up with the test cases that cover 

all structures (paths, instructions, branches). Structural criteria are normally classified into the two, namely 

control-flow, and data-flow, categories. The control-flow criteria mainly concentrate on the execution of all the 

paths or branches, while the data-flow criteria emphasize the flows of the data values such as variable definitions 

and usages and so on. The all-uses criterion is one of the commonly used data-flow criteria which ensures each 

data definition and associated use is covered without redefinitions on the path. 

1.3 Mutation Testing 

Mutation Testing is the process of modifying the SUT so as to simulate common programming errors. These 

changes, called mutation operators, produce different SUT versions, known as mutants [3]. Testers then design 

cases to detect these seeded errors. A test case that demonstrates an execution path of a mutant that is different 

from the original is said to “kill” the mutant. Mutation testing relies on the assumption that a well-designed test 

suite will kill all non-equivalent mutants, which motivates the testers to readjust the suite if necessary. This 

technique is mostly used in academic settings. 

Software testing is important for ensuring and evaluating the quality of software. Despite advancements in 

software development methodologies and programming languages, testing is still an important part of the process. 

Its main purpose is to verify that the software functions as intended and does not produce unintended behaviours, 
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thus improving the overall quality of the software [4]. However, testing is a resource-intensive and costly activity, 

often consuming more than 50% of the total software development costs. Also, like any human-driven task, it is 

prone to errors, and developing reliable software systems continues to be a significant challenge. To solve these 

problems, researchers and practitioners are actively exploring more efficient and effective software testing 

methods.A practical method to solving software testing problems is to automate the testing process [5]. As a result, 

significant efforts are being dedicated to automating these activities. AI (Artificial intelligence), especially ML 

(machine learning), proves effective in reducing the effort involved in many software engineering tasks. ML, a 

field that intersects AI, computer science, and statistics, is being applied to automate different aspects of software 

engineering. Many software testing problems can be framed as learning tasks, making them well-suited to machine 

learning algorithms. This leads to increasing interest in using ML to streamline and enhance the software testing 

process [6]. Additionally, as software systems continue to grow in complexity, traditional testing methods often 

struggle to scale, making ML-based techniques even more appealing for modern software systems. 

2. LITERATURE SURVEY 

M. Esnaashari, et al. (2021) presented a method for automating test data generation using a standardized approach 

that focused on covering all finite paths. In this process, the problem was created as a search problem and then 

solved using meta-heuristic algorithms [7]. The scheme employed a memetic algorithm where reinforcement 

learning was used as a local search technique within a genetic algorithm. Experimental results showed that this 

method outperformed many existing evolutionary and meta-heuristic algorithms in terms of speed and test data 

generation efficiency, achieving better coverage with fewer evaluations. The comparison included conventional 

genetic algorithms, various genetic algorithm improvements, random search, particle swarm optimization, bees 

algorithm, ant colony optimization, simulated annealing, hill climbing, and tabu search. M. Waltz, et al. (2024) 

proposed the T-Estimator (TE) for two-sample testing of the mean, which flexibly adjusted the significance level 

of the underlying hypothesis tests to interpolate between over- and underestimation [8]. Furthermore, a 

generalization called the K-Estimator (KE) was introduced, which maintained the same bias and variance bounds 

as the TE while allowing the use of a nearly arbitrary kernel function. The TE and KE were applied to modify Q-

Learning and the Bootstrapped Deep Q-Network (BDQN), and their convergence was demonstrated in the tabular 

setting. Additionally, a modification of the TE-based BDQN was presented, which dynamically adjusted the 

significance level to minimize the absolute estimation bias. All the proposed estimators and algorithms were 

rigorously evaluated and applied to many tasks and environments, showcasing the bias control and performance 

improvements enabled by the TE and KE. L. Cai, et al. (2022) proposed a lightweight deep reinforcement learning-

based application automation testing method called MARTesting (Multi-Attribute Fusion Reinforcement Testing) 

[9]. This method started by eliminating invalid widgets through a difference operation between the attribute sets 

of the current and previous states. Next, it abstracted the attributes of all widget elements on a page into a state 

representation, which served as the input to the neural network. This state was determined by combining the 

position and text information of the page elements. Finally, this method defined a reward function that 

incorporated both the novelty of the state and the execution frequency of actions. Experimental results on six 

open-source applications demonstrated that the MARTesting approach significantly improved code coverage and 

branch coverage compared to existing methods. L. Cai, et al. (2021) constructed ICCD (Interactive Control 

Feature Diagram) to improve the DDQN (Deep Double Q-Network) by incorporating a residual network [10]. 

This improvement allowed the algorithm to take images as input. Furthermore, the original single output action 

(n*w*h) was split into two successive outputs: one representing the interaction (1, n) and the other representing 

the position (1, w * h). A new reward function was proposed, combining the interaction frequency with image 

similarity in the ICCD, aimed to explore different UIs (user interfaces) and ensuring that multiple actions were 

executed under the same UI. Experiments conducted on five open-source applications showed that the presented 

method outperformed existing techniques in terms of both code coverage and branch coverage. 

S. Saber, et al. (2021) explored automating GUI testing was a complex task due to the need for human involvement 

in determining actions and evaluating outcomes [11]. This study presented a new method to fully automate GUI 

testing using deep reinforcement learning. This deep reinforcement learning model autonomously explored the 

system's states and identifies potential testing sequences. The automated testing agent starts by exploring the 

environment, learning the most efficient paths to maximize coverage while simultaneously detecting GUI bugs. 

This method allowed testers to focus more on functional testing, ultimately improving the overall software quality. 

This work evaluated the model on various industry products, and the results showed a significant improvement in 

coverage compared to random testing. T. Cao, et al. (2021) explored continuous integration testing introduced the 
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challenge of sparse rewards in reinforcement learning, as frequent integrations typically result in few test failures. 

This problem was solved by increasing the number of rewarded test cases [12]. This work proposed a 

reinforcement learning reward strategy based on TCSD (Test Case Synchronization and Diversity), which rewards 

both failed test cases and, additionally, selects passed test cases that have the potential to fail. Experiments 

conducted on six real-world industrial datasets showed that the TCSD method improved the learning efficiency 

and fault detection capabilities of reinforcement learning, achieving an average 6.35% increase in NAPFD 

compared to traditional strategies. 

M. H. Moghadam, et al. (2020) provided a method for autonomous performance assessment that makes use of 

self-adaptive techniques and fuzzy logic in addition to model-free reinforcement learning [13]. Without access to 

the system model and source code, it could determine the best course of action for creating workload- and 

platform-based test conditions that meet the desired testing goal. In order to solve this problem of uncertainty and 

improve the precision and flexibility of the suggested learning, fuzzy logic and self-adaptive technique are 

employed. This study evaluation experiments showed that the suggested autonomous performance testing 

framework may effectively and adaptably produce test circumstances for a range of testing cases. 

3. RESEARCH METHODOLOGY 

The technique of reinforcement learning is applied for the automated software testing. Reinforcement learning is 

a machine learning method that allows agents to gain knowledge by interacting directly with an environment, 

rather than relying on a pre-existing dataset. Unlike other learning methods, RL focuses on finding the optimal 

decision-making strategy through trial and error. In this process, an agent performs an action, receives feedback 

from the environment in the form of a reward, and transitions to a new state based on the environment's response. 

The agent's goal is to maximize the cumulative reward, which is the total reward accumulated over a series of 

actions. Q-Learning is a popular RL technique that draws inspiration from behaviourist psychology, and it is 

grounded in the concept of a Markov Decision Process (MDP), which provides the mathematical framework for 

modelling decision-making in such dynamic environments [5]. It is expressed as: 

➢ 𝑆: Set of possible states  

➢ 𝐴: Set of possible actions  

➢ 𝑅: Distribution of reward given (state, action) pair  

➢ 𝑃: Transition probability i.e distribution over the next state given (state, action) pair  

➢ 𝛾: Discount factor 

Fig. 3.1 illustrates the reinforcement learning process and the interaction dynamics between the agent and the 

environment. 

 
Fig. 3.1 Reinforcement Learning Mechanism 

In Q-learning, an agent, at each discrete time step 𝑡 = 0, 1, 2, 3. . .... makes interaction with the environment [6]. 

Initially, at 𝑡 = 0, the environment begins in a starting state 𝑠0 = 𝑆. Then at every time step from 𝑡 = 0 until the 

process is complete: 

➢ The agent chooses an action at ∈ A(st) where A(st) is represents the set of possible actions in 

state st. 
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➢ The environment provides a mathematical reward rt, sampled according to the reward 

distribution R(. |st, at). 

➢ As per the transition probability P(. |st, at), the environment determines and returns the 

subsequent state st+1  

➢ After receiving the reward rt, agent moves to the new state st+1. 

The agent perceives the environment’s current state 𝑠𝑡 at every time step t and chooses an action 𝑎𝑡  as per a policy 

𝜋. This policy defines the agent’s behaviour in response to the environment. Since the objective is for the agent 

to act optimally to maximize cumulative rewards, the goal of reinforcement learning is to identify the optimal 

policy 𝜋∗ that archives the highest ∑   
𝑡>0 𝛾𝑡𝑟𝑡, also known as cumulative discounted reward. 

In Q-learning, the Q-value function (or Q-function) is defined for a given policy 𝜋. The aim here is to evaluate 

the quality of a state-action pair. This function provides the expected cumulative reward for any state 𝑠 and action 

𝑎, assuming the agent starts at 𝑠, takes action 𝑎, and then follows policy 𝜋. The optimum Q-value function, denoted 

by 𝑄∗ represents the highest anticipated cumulative reward that can be achieved from a given state-action pair, 

considering all probable policies. 

𝑄𝜋(𝑠𝑡 , 𝑎𝑡) = 𝜋𝑚𝑎𝑥 ∑(𝛾𝑡𝑟𝑡|𝑠 = 𝑠0, 𝑎 = 𝑎𝑡 , 𝜋) 

𝑡>0

                (1) 

If the optimum state-action values for the subsequent step 𝑄∗(𝑠𝑡+1, 𝑎𝑡+1) are identified, the best approach is to 

select the action that makes the expected reward 𝑟 + 𝛾𝑄∗(𝑠𝑡+1, 𝑎𝑡+1) maximum. In this case, 𝑟 is the immediate 

reward of the current step. 𝑄∗ meets the Bellman equation which is: 

𝑄∗(𝑠𝑡 , 𝑎𝑡) = 𝑅(𝑠𝑡 , 𝑎𝑡) + 𝛾𝑎𝑡+1𝑚𝑎𝑥𝑄(𝑠𝑡+1, 𝑎𝑡+1)                           (2) 

where 𝛾 represents the discount-rate parameter ranging between 0 and 1 which determines the balance between 

immediate and cumulative rewards. A value of 𝛾 nearer to 0 gives more importance to immediate rewards, while 

a value closer to 1 prioritizes cumulative rewards. The optimal policy 𝜋∗  is thus the one that chooses the action 

with the highest Q-value, as determined by 𝑄∗. The Q-learning algorithm iteratively estimates the Q-function 

using equation (2). Initially, the Q-function is set to a default value. After each action 𝑎𝑡 taken by the agent from 

state 𝑠𝑡 to 𝑠𝑡+1, with the reward 𝑟𝑡, the Q-function is updated using the following formula: 

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼(𝑟𝑡 + 𝛾𝑎𝑚𝑎𝑥𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡 , 𝑎𝑡))   (3) 

Here, 𝛼 represents the learning rate (0 ≤ 𝛼 ≤ 1). The learning rate controls how much the new observation 

influences the updated estimate of the Q-function. The Q-learning algorithm is proven to converge to the true Q-

function when applied to a Markovian environment, with bounded immediate rewards and continuous updates of 

state-action pairs. 

4. RESULTS AND DISCUSSION 

This research work is based on the software testing based on agile testing. The heart disease dataset is collected 

from kaggle. The proposed model is implemented and results of the method is compared in terms of accuracy, 

precision and recall. The detail description is the parameters is given below: 
Accuracy: Accuracy is defined as the number of points correctly classified divided by total number of points 

multiplied by 100. 

 

Accuracy = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 
*100 -(1)  

Precision: In pattern recognition, information retrieval and binary classification, precision (also called positive 

predictive value) is the fraction of relevant instances among the retrieved instances.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
− (2) 

 

Recall: Recall is the fraction of relevant instances that have been retrieved over the total amount of relevant 

instances.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
− (3) 
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Fig. 4.1 Training and Test Data  

As shown in fig. 4.1, the percentage of training and test data is illustrated. The  training data is 80 percent and 

test data is 20 percent  

 
Fig. 3.2 Model Training Information 

As shown in fig.3.2, the model training and loss is illustrated in the figure. It is analyzed that training accuracy 

is achieved upto 96 percent  

Table-3.1 Performance Analysis 

Model Accuracy Precision  Recall 

Random Forest 66 Percent  56 Percent  66 Percent  

SVM  77.59 Percent  78 Percent  78 Percent  

KNN 69.88 Percent  70 Percent  70 Percent  

Proposed Model  91 Percent  91.2 Percent  92 Percent  
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Fig. 3.3 Performance Analysis 

The results of the contrast among the proposed methodology, the proposed algorithm, and the current method, 

KNN classification, is shown in Fig. 3.3. According to the analysis, the proposed method performed better for 

forecasting defect detection than the current method with respect to of precision, recall, and accuracy. 

CONCLUSION 

Software testing is important for ensuring and evaluating the quality of software. Despite advancements in 

software development methodologies and programming languages, testing is still an important part of the process. 

Its main purpose is to verify that the software functions as intended and does not produce unintended behaviours, 

thus improving the overall quality of the software. However, testing is a resource-intensive and costly activity, 

often consuming more than 50% of the total software development costs. To automate the software testing many 

techniques are proposed in the previous times but those techniques are unable to achieve good performance in 

terms of accuracy. In this research work reinforcement learning based method is proposed which achieves 96 

percent accuracy for software testing.  
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